

Tutorial for Software
Developers

 D4.4
 BEST
 Grant: 699298
 Call: H2020-SESAR-2015-1

Topic: Sesar-03-2015
Information Management in ATM

 Consortium coordinator: SINTEF
 Dissemination Level: PU (public)
 Edition date: 29 May 2018
 Edition: 00.01.00

EXPLORATORY RESEARCH

EDITION 00.01.00

2

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Authoring & Approval

Authors of the document
Name/Beneficiary Position/Title Date

Audun Vennesland (SINTEF) Project Member 28.05.2018

Eduard Gringinger (FRQ) Project Member 28.05.2018

Reza Mirhossein (SLOT) Project Member 28.05.2018

Reviewers internal to the project
Name/Beneficiary Position/Title Date

Joe Gorman (SINTEF) Project Coordinator 30.04.2018

Scott Wilson Eurocontrol 23.05.2018

Approved for submission to the SJU By — Representatives of beneficiaries involved in the project
Name/Beneficiary Position/Title Date

Approved by all partners, in
accordance with procedures
defined within the consortium.

 29.05.2018

Rejected By - Representatives of beneficiaries involved in the project
Name/Beneficiary Position/Title Date

Document History

Edition Date Status Author Justification

00.00.01 21.02.2018 PCOS Reza Mirhossein Prepared document for
PCOS review

00.00.02 05.03.2018 PCOS Reza Mirhossein Corrections from PCOS
internal review

00.00.03 23.04.2018 Intermediate Reza Mirhossein Prepared for internal
review

00.00.04 17.05.2018 External proposed Reza Mirhossein Add internal review
comments

00.00.05 29.05.2018 Final Reza Mirhossein Add minor changes from
internal review

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

3

Founding Members

00.01.00 29.05.2018 Released Joe Gorman Removed track changes
and comments. Updated
administrative
information on initial
pages, ready for delivery
to SJU.

EDITION 00.01.00

4

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

BEST
Achieving the BEnefits of SWIM by making smart use of Semantic
Technologies
This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 699298 under the European Union’s Horizon 2020 research and innovation
programme.

Abstract/Executive Summary
The purpose of this deliverable is to facilitate software development process by giving a tutorial-style
overview of the project results. It explains the tools and fundamental concepts that will help software
developers to perceive the primary guidelines for further development.

The document outlines the primary purposes of the developed tools/concepts as well as basic
instructions to utilize them in further developments and industry use cases.

Originally this deliverable aims to address two different result groups. The first group is interested in
using the software tools developed by BEST (ontologies, ontology generation scripts, ontology
modularisation scripts and the AIRM compliance validator) for further developments. The second
group is more interested in the concepts (such as the semantic container concept) and developed
prototypes to evaluate their feasibility and usefulness. Associated sections of this deliverable serve
crucial information to elaborate the objectives and implementation methodologies mainly in ontology
development, modularization, compliance validator and semantic container.

The expected takeaway of this tutorial would be transferring main concepts and necessary steps to
use the project results effectively in software development process.

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

5

Founding Members

Table	of	Contents	
	

Abstract/Executive Summary .. 4

1 Introduction .. 6

1.1 Purpose .. 6

1.2 Intended Readership .. 7

1.3 Relationship to other Deliverables & Document Structure .. 8
1.4 Acronyms and abbreviations.. 10

2 Results Group 1: Software Developed in BEST suitable for direct use in model and
software development ... 12

2.1 Ontologies and Ontology Generation... 12
2.1.1 What is the purpose of the tools? ... 13
2.1.2 How do I use the tools? .. 13

2.2 Modularising ontologies .. 16
2.2.1 What is the purpose of the tools? ... 16
2.2.2 How do I use the tools? .. 18

2.3 Validating compliance and ontology matching .. 22
2.3.1 What is the purpose of the tool?... 22
2.3.2 How do I use the tool? .. 22

3 Results Group 2: Concepts and Prototypes developed in BEST for illustrating the
usefulness and feasibility ... 28

3.1 Semantic Container Concept .. 28

3.2 Semantic Container Management System (Prototype) .. 30
3.2.1 How does the Distribution and Replication Work? .. 30
3.2.2 How does Versioning and Consistency Management work? .. 32
3.2.3 How is Lineage and Provenance represented? .. 33
3.2.4 How does the System Architecture look like? .. 35

3.3 Integration of Semantic Containers in a SWIM Environment ... 36

References ... 37

EDITION 00.01.00

6

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

1 Introduction1
1.1 Purpose
The Grant Agreement describes the content of this deliverable as follows:

This deliverable will describe how semantic technologies can be implemented in a SWIM

environment. It will include lessons learned from the developments in BEST and be targeted

towards software developers of ATM applications.

It is clear from this definition that the intended audience for this deliverable consists of software

developers interested in how they might benefit from results of the BEST project. But it is unclear from

this GA description what “implementing” semantic technologies would mean. Given that the

deliverable is from WP4 “Stakeholder Awareness and Relevance” whose stated objective us “to

accomplish the communication needs of the project”, it makes sense to interpret “implemented” as

meaning something like “understood and used effectively”. With this context, we define the purpose

of the deliverable more precisely as being:

to provide a tutorial-style overview of the key results of the project that are of

specific interest to people responsible for development of ATM applications,

providing them with advice on how the results can be used effectively.

The project results of potential interest to software developers fall into two groups, each of which

needs a different focus in a tutorial document.

Result Group Focus of information needed in

a tutorial

Relevant

project

deliverables

Group 1: Software tools developed in the

project that could be directly used by people

outside the project as part of their work in

developing models and/or applications.

• What do the tools do, what

are they for?

• If I want to use them, what

do I need to do?

• D1.1

• D1.2

• D5.2

1 The opinions expressed herein reflect the author’s view only. Under no circumstances shall the SESAR Joint Undertaking be
responsible for any use that may be made of the information contained herein.

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

7

Founding Members

Result Group Focus of information needed in

a tutorial

Relevant

project

deliverables

Group 2: Concepts and prototypes developed

in the project with a view to illustrating the

usefulness/feasibility of adopting concepts

used in the project, but not intended for direct

use by developers in their own development

processes.

• What is the concept, and

what advantages might it

offer me if I use it?

• What is needed to use

Semantic Containers in a

SWIM environment?

• D2.1

• D2.2

• D3.1

• D3.2

It must be emphasised that, as an exploratory research project at TRL 1, it is absolutely not the role of

BEST to provide prototype tools that are anywhere near the stage of becoming directly deployable,

commercial software products. Thus, the “tutorial” information should not be considered as providing

“manuals” for the software, such as is typically expected for software products. Rather, its purpose is

to provide high-level information about what has been implemented, what it is for and how it can be

used.

Full details of the various results are available in the individual deliverables. This tutorial in some cases

quotes directly from these separate deliverables, in some cases provides information on parts of their

contents in summary form or expressed in a more “tutorial” style, and in some cases provides

completely new explanations/summaries. All of this is intended to make this tutorial easily understood

by the intended readership, and to make it possible to get an overview without needing to read all the

deliverables in full. However, software developers with serious plans to use any of the results would

need to refer to the relevant deliverables to get all the information they would need.

1.2 Intended Readership
The tutorial is aimed at software developers who are involved in developing models or application
software in the ATM domain, and who are interested in the potential benefits of semantic technology
in a SWIM environment.
It may also be useful for IT developers who have a more general interest in aviation digital trends
particularly in ATM.

EDITION 00.01.00

8

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

1.3 Relationship to other Deliverables & Document Structure
The table below shows the other BEST deliverables that have been directly used in production of this
deliverable. The relationship to this deliverable is in each case that the contents of the deliverable
have been partially summarised/augmented with explanations aimed at the intended readership.
The table is organized according to the two “Groups” defined above in section 1.1, and shows – for
each deliverable – which sections of this this deliverable provide the tutorial information. From this
you can see that the structure of the deliverable reflects the two groups, and the deliverables that are
related to each one.

Group Deliverable Content Tutorial
information in
section(s)

Group 1: Directly
usable software

D1.1 Experimental
ontology
modules
formalizing
concept
definition of
ATM data

D1.1 is the deliverable responsible
for developing the BEST ontology
infrastructure. The ontology
infrastructure includes a monolithic
ontology developed from the ATM
Information Reference Model
(AIRM) UML model and a set of
ontology modules, each
representing different sub-areas of
ATM information. Furthermore, the
ontologies form a baseline for the
establishment of guidelines
describing how semantic
technologies can be applied to
support information exchange in a
SWIM environment.

2.1

D5.2 Ontology
Modularisation
Guidelines for
SWIM

D5.2 describes a set of guidelines for
modularising ontologies in a SWIM
setting. The ontology
modularisation guidelines evaluates
the “monolithic” ontology and the
ontology modules developed in
relation to D1.1 and provide
guidelines on how modularisation
best can be accomplished in a SWIM
operational setting.

2.2

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

9

Founding Members

Group Deliverable Content Tutorial
information in
section(s)

D1.2 AIRM
Compliance
Validator

D1.2 is responsible for developing
the AIRM Compliance Validator. The
AIRM Compliance Validator
prototype application will, using
techniques from ontology matching
and schema matching, contribute to
detecting semantic differences
between the monolithic ontology
and the ontology modules. This can
assist in monitoring of compliance
between a reference ontology, here
represented by the AIRM ontology
and ontology modules (represented
by the AIXM and IWXXM ontology
modules).

2.3

Group 2: Concepts
and prototypes
illustrating
feasibility

D2.1 Techniques for
ontology-based
data description
and discovery in
a decentralized
SWIM
knowledge base

D2.1 proposes a faceted ontology-
based description and discovery of
semantic containers. It presents
experimental results of using
common semantic web
technologies and the reference
ontologies developed in
Deliverable 1.1 for realizing the
semantic container approach.

3.1
3.2

D2.2 Ontology-based
techniques for
data distribution
and consistency
management in
a SWIM
environment

D2.2 extends the semantic
container approach described D2.1
with mechanisms for handling
distribution of containers across
different nodes, adding provenance
information to the administrative
metadata, distinguishing between
logical and physical containers for
distributed allocation.

D3.1 Prototype Use
Case Scenarios

The use case scenarios defined in
D3.1 provides a scope for both the
AIRM ontology and the ontology
modules.

3.3

EDITION 00.01.00

10

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Group Deliverable Content Tutorial
information in
section(s)

D3.2 Prototype
SWIM-enabled
applications

The prototype applications
developed in D3.2 will demonstrate
practicality of the semantic
container approach in a SWIM
setting.

1.4 Acronyms and abbreviations

Acronym/Abbreviation Explanation

ADQ Aeronautical Data Quality

ANSP Air Navigation Service Provider

AIRM ATM Information Reference Model

AIXM Aeronautical Information Exchange Model

ATM Air Traffic Management

DNOTAM Digital NOTAM

F-Logic Frame Logic

FIXM Flight Information Exchange Model

IWXXM ICAO Meteorological Information Exchange Model

METAR Meteorological Aerodrome Report

NOTAM Notice To Airmen

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

RIF Rule Interchange Format

SESAR Single European Sky ATM Research

SPARQL SPARQL Protocol and RDF Query Language

SIGMET Significant Meteorological Information

SQL Structured Query Language

TAF Terminal Aerodrome Forecast

UML Unified Modelling Language

W3C World Wide Web Consortium

WSDOM Web Service Description Ontological Model

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

11

Founding Members

XMI XML Metadata Interchange

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformation

EDITION 00.01.00

12

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

2 Results Group 1: Software Developed in
BEST suitable for direct use in model and
software development

2.1 Ontologies and Ontology Generation
The ontologies developed and employed in BEST are detailed in D1.1 [1]. The transformation scripts
developed by BEST in order to produce the ontologies are also detailed in D1.1 [1]. These results are
suitable for direct use in model and software development with the limitations obvious from a TRL 1
project’s output. The XSLT scripts used in the transformation are available from:
http://project-best.eu/downloads/ontologies/xslt/xslt.zip

The zip file contains the XSLT files, a sample XMI file (that has been processed according to section
2.1.1), a sample OWL file resulting from the transformation, and a readme file.

The OWL ontologies that are available are based on UML models representing the ATM Information
Reference Model (AIRM), the Aeronautical Information Exchange Model (AIXM) and the ICAO
Meteorological Information Exchange Model (IWXXM). We provide a short introduction of these
models here, but further details can be found in D1.1 [1]. All ontologies can be downloaded from the
BEST web site at: http://www.project-best.eu/downloads/ontologies/ontologies.zip

AIRM is considered the reference standard model which addresses semantic interoperability and
provides a harmonised definition for information being exchanged in ATM. Semantic interoperability
within ATM is facilitated by ensuring that all information being exchanged within ATM is conformant
with the definitions in AIRM. Such compliance is achieved following the rules of compliance defined in
the new EUROCONTROL Specification for SWIM Information Definition [2] which was based largely on
the SESAR AIRM Compliance Framework [3].

The AIRM is decomposed into two main views having different abstraction levels:

• The Information Model, which defines information elements used in European ATM and their
interrelations. In this view, the information elements are defined as entities without detailing their
properties.

• The Logical Data Model, which refines the content of the Information Model to be used in more
“operational” settings to support system and service development. In this view, the fundamental
structure of the models and their entities is the same as in the information model, but each entity
includes more detail, such as class properties and clearly defined association roles.

In the development of the ontological infrastructure, we have only focused on the Logical Data Model
since the resulting ontologies require a certain detail level. In addition to classes, the OWL
representation also includes properties and associations transformed from UML. These are
represented as OWL properties. In order to maintain inter-package relationships present in the original

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

13

Founding Members

UML model, we have included the Abstract package and Data Types package in addition to the Subject
Field package.

AIXM provides a UML data model and associated XML schemas for representing the format of digitally
communicated aeronautical information. AIXM defines information related to, among other things,
airports and heliports, airspace structures, organisations (including services they provide),
geographical points and navigation aids, route information and flying restrictions.

IWXXM is another exchange model that encompasses information about weather phenomenon. This
includes actual and forecasted weather reports at aerodromes (METAR and TAF), weather conditions
along the route (AIRMET), significant meteorological information (SIGMET), and advisories related to
volcanic ash events and other extreme meteorological conditions (e.g. cyclones). As with AIXM, the
UML model is targeted for XML schema development, something that makes it challenging for a
completely automated transformation to OWL.

2.1.1 What is the purpose of the tools?
BEST provides a set of ontologies which can be picked up and used. However, as detailed above, the
scope of the ontologies is limited. They can be used with these limitations in mind. However, the
software developer may need to go beyond the OWL representations produced by BEST.

The purpose of the transformation scripts is to automatically obtain an OWL representation from the
original UML models. The result from the transformation process is hence an OWL file representing
the entire source UML model (monolithic representation), which can be useful in itself, or it can be
subject to further modularisation by following the process described in section 2.2.

The AIRM and AIXM UML models are transformed into OWL format as an automated process using
Extensible Stylesheet Language Transformation (XSLT) transformation scripts developed in the project.
The IWXXM ontology has been developed manually. The resulting ontologies have different scope and
size. The AIRM is transformed to a single (monolithic) OWL ontology, while the AIXM and IWXXM
modules are represented as ontology modules, i.e. subsets of a more complete ontology representing
the original UML model.

2.1.2 How do I use the tools?
The overall approach for transforming from source UML models to OWL is illustrated in Figure 1:

EDITION 00.01.00

14

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 1. Transformation from UML to OWL

XMI allows for a straightforward parsing and processing of elements from the UML model. In BEST, the
UML editor Sparx Enterprise Architect was used to generate an XMI file. In some cases, the XMI file
resulting from the generation needs some minor post processing. For example:

Redundant data type declaration
During the transformation using OxygenXML, the SAXON parser throws an error since there
are two data types declared for
“PackagedElement.PackagedElement.OwnedAttribute.upperValue. This types are
‘uml:LiteralInteger’ and ‘uml:LiteralUnlimitedNatural’. This can be resolved by removing
‘uml:LiteralInteger’.

Un-needed elements
The XMI file contains elements that are irrelevant for the transformation so the following
changes should be made on the XMI file both to ease manual inspection (if needed) and
processing time:
• Remove the uml:Model branch of the XMI, since this is basically contains duplicate

information to the xmi:Extension branch.
• Remove the <diagrams> elements since they do not contain any information relevant for

the transformation
• Remove the top-level UML packages (e.g. “AIXM_v.5.1.1”) as we do not want that as a

part of the OWL.

Whitespace removal
Whitespace present in UML elements are maintained in the XMI. Especially in code list entries
this was the case. This could be resolved by doing a search-replace (“ “ -> “”) of the XMI file in
OxygenXML.

To ensure that the semantics of the UML constructs are correctly transformed to semantics of the OWL
constructs, the rules for mapping between UML and OWL specified by OMG (Object Management
Group) are followed. However, we have extended the OMG specification with a few additional rules.
Table 1 describes the rules that are used to transform from a UML construct to an OWL construct.

XMI XSLTUML OWL

OMG
Rules

Custom
Rules

Post-
processing

Post-
processing

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

15

Founding Members

Table 1. Mapping rules adapted from OMG [4]

UML Construct OWL Construct

UML Class OWL Class

UML Generalization OWL SubClassOf

UML Boolean attribute OWL Class

UML Attribute with complex data type OWL Object Property

UML Association OWL Object Property

UML Aggregation (AIRM only) OWL Object Property

UML Composition (AIXM and IWXXM) OWL Object Property

UML Attribute with simple data type OWL Data Property

UML Code List OWL Class

UML Code List values OWL Individuals

Once an OWL representation is in place, some post-processing for some of the OWL ontologies is
required. This relates to ensuring a good representation of <<choice>> constraints and UML
association classes (a detailed description of this is provided in D1.1 [1]).
The main XSLT file is airm_xslt_xmi2owl_Main.xsl which imports the other XSLT files in the folder.
These include:
 • airm_xslt_xmi2owl_Classes.xsl
 • airm_xslt_xmi2owl_ObjectProperties.xsl
 • airm_xslt_xmi2owl_DatatypeProperties.xsl
 • airm_xslt_xmi2owl_Individuals.xsl

In BEST, we have used the XML editor OxygenXML2 to do the actual transformation from UML to OWL,
and the OWL editor Protégé to evaluate intermediate results. The representation syntax for the
resulting OWL file is RDF/XML.

2 https://www.oxygenxml.com/

EDITION 00.01.00

16

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Some additional details related to the ontology development in BEST can be found in deliverable D1.1
[1] and we encourage the reader to consult this deliverable for a complete understanding of this
development process.

2.2 Modularising ontologies
The modularisation tools described in this section are available on GitHub at: https://github.com/sju-
best-project/ontology-modules

The set of guidelines used by BEST to modularise ontologies in an ATM setting are detailed in
Deliverable D5.2 [5]. The starting point for the modularisation is the ontologies described in the
previous section. This section provides a summary of the main principles related to ontology
modularisation in BEST and describes the software developed to support the ontology
modularisation. For additional clarification about the modularisation process, we refer to D5.2 [5].

2.2.1 What is the purpose of the tools?
BEST used the tools to modularise the “monolithic” ontology produced from the AIRM’s Logical
Data Model. D1.1 describes the distinction of a monolithic ontology and an ontology module as
follows:

“Monolithic ontologies are typically characterised as ontologies large in size and complexity,
and often spanning several different topics and knowledge areas. Ontology modules on the
other hand, aim to provide ontology users with the specific knowledge they require, reducing
the scope as much as possible to what is strictly necessary. An ontology consists of a set of
axioms, i.e. logical statements, that holds some knowledge. An ontology module encapsulates
a subset of the axioms compared to the “monolithic” ontology. For example, if we are
interested in only the knowledge related to the concept Aircraft in AIRM, we can represent
this knowledge in an Aircraft ontology module, while disregarding other axioms from the
AIRM ontology that are not relevant for expressing knowledge about an Aircraft.”

Monolithic ontologies will in many cases include more concepts, properties and instances than needed
for a particular use case. Ontology modules on the other hand represent subsets of a monolithic
ontology that can be customised to encompass only the entities required for describing a single
knowledge domain and/or a particular purpose. For this reason, ontology modularisation is a separate
research field within ontology engineering, and a quite active one as well.

Ontology modularisation is a process whereby ontology modules are automatically obtained from
monolithic ontologies using a variety of techniques. The rationale for operating with modules instead
of their monolithic counterparts can for example be improved performance, usability and
maintainability.

There are two main strategies for splitting up a monolithic ontology into ontology modules:
1. Ontology Partitioning. This strategy divides the ontology into several equal pieces using

quantitative approach. It does not consider the knowledge contents of each resulting module. In
BEST we have decided to apply the qualitative approach to base the modularisation on the

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

17

Founding Members

contents of the resulting module. This may result in very large modules occasionally, yet they could
be further modularised into sub-modules to achieve the desired results.

2. Ontology Module Extraction. Module extraction extracts modules from an ontology based on a
definition of a sub-vocabulary, also called a seed signature. This signature consists of a set of
entities (classes and/or properties and/or individuals) from which the technique recursively
traverses through the ontology to gather related entities to be included in the module.

The modularization is useful for the maintaining the ontologies and taking care of the changes.
However, there is another useful application for it if we aim to build a specific application. The specific
application might not require to handle the entire ontology as built for specific purpose, so it can deal
with the specific part of the otology extracted form the whole ontology into a module. We believe that
modularization criteria should be defined in terms of the applications for which the modules are
catered. Accordingly, utilizing modularization software can be explained step-by-step as below:

EDITION 00.01.00

18

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 2. Framework of ontology modularization (re-used from [6])

2.2.2 How do I use the tools?
As part of the investigations in D5.2, the BEST project has developed the following software
applications to support the ontology modularisation process:
• The Module Extractor extracts a module from the AIRM ontology given a seed signature as

parameter. A seed signature can be either a class name or a property [7].

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

19

Founding Members

• The Ontology Module Network Report Generator checks if there are any classes in the resulting
module for which a dependency is not declared. This tool also suggests which ontology modules
should be imported to resolve the missing dependencies.

• The Module Network Dependency Manager acts on the analyses performed in the previous step
and automatically declares the relevant import statements in the ontology module and removes
the outlier classes so that there are no duplicate entries in the ontology module.

• The Redundancy Report Generator analyses the ontology modules for duplicate classes and
presents a list of (potential) duplicates. Resolving the redundancy is a manual operation. The
Redundancy Report Generator performs a pairwise ontology matching operation of a set of
modules in order to identify duplicate classes.

Apache Maven3 is used for managing dependencies with required java libraries.

All software is developed in java and is made available on GitHub at: https://github.com/sju-best-
project/ontology-modules

All ontology processing is performed with support of the OWL API [8]. Redundancy Report Generator
re-uses functionality provided by the Alignment API [9].

2.2.2.1 Module Extractor
A screenshot of the Module Extractor is shown in Figure 3. The Module Extractor creates a (locality-
based) module according to a seed signature from the AIRM ontology. This tool is based on an OWL
API implementation of locality-based module extraction developed by the University in Manchester[7].
However, when testing this functionality in the OWL API, we discovered that the resulting modules
only contained classes and individuals, all properties were omitted in the extraction. Therefore, we
extended the OWL API implementation with functionality that also extracted object properties and
data properties for a given ontology module from the AIRM ontology. One consequence of including
the object properties is that the resulting module includes outlier classes. This happens because some
of the range classes referred to in the object properties belong to other modules extracted from the
AIRM ontology.

The command-line user interface prompts the user for three parameters:

• Path to the OWL file representing the ontology from which a module should be extracted from
• The name of the module to be created
• The signature from which axioms represented in the new module should be extracted

3 https://maven.apache.org

EDITION 00.01.00

20

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 3. An example on how to use the modularisation tool to extract a Meteorology module from the AIRM ontology

2.2.2.2 Redundancy Report Generator
This tool checks for duplicate classes in modules, after the desired set of modules are extracted by the
Module Extractor in the previous step. By pairwise matching of ontology modules using string similarity
matching it identifies duplicates and creates a report that lists all duplicates among the ontology
modules used as input parameters. Figure 4 shows how to interact with the Redundancy Report
Generator and how results are presented.

Figure 4. Redundancy Report Generator for identifying duplicate classes in modules

2.2.2.3 Ontology Module Network Report Generator
Figure 5 shows a screenshot of the Ontology Module Network Report Generator. This application
analyses an ontology module and reports missing dependencies. Missing dependencies are discovered
by searching for an ontology module that has an outlier class in its signature. From this the Ontology
Module Network Report tool suggests which ontologies that the module should import and if there
are any classes for which there is no relevant module, the names of these classes are presented to the
user for further manual analysis of which ontology this class belongs to and consequently which
ontology should be imported. Although the imports are taken care of automatically by the Module
Network Dependency Manager, the relationships between the modules can bring useful knowledge
about the interdependencies of the module network.

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

21

Founding Members

Figure 5. An example report from the Ontology Module Network Report Generator tool

2.2.2.4 Module Network Dependency Manager
A screenshot showing interaction with the Module Network Dependency Manager is shown in Figure
6. This application identifies relevant ontology modules to import, declares the import statements so
that the ontology module actually imports these modules, removes outlier classes, that is, those
classes that previously missed a dependent ontology module.

The user is asked to provide a path to the OWL file representing the ontology module to which import
declarations should be added. She is also asked to enter the path to the folder holding all ontology
modules within the network, so that the Module Network Dependency Manager can process them and
see if they contain the classes included in a dependency relation. If so, the necessary import
declarations are included in the module and the dependency resolved. Finally, the ontology module is
saved to disk with all required import declarations.

EDITION 00.01.00

22

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 6. Module Network Dependency Manager

2.3 Validating compliance and ontology matching
The source code of the AIRM Compliance Validator can be downloaded from GitHub:
https://github.com/sju-best-project/compliancevalidator.More detailed information about the
development and evaluation of the AIRM Compliance Validator proof-of-concept application can be
found in deliverable D1.2 AIRM Compliance Validator [10]. This chapter describes the main principles,
details related to the application development and how to interact with the AIRM Compliance
Validator.

2.3.1 What is the purpose of the tool?
The AIRM Compliance Validator is a proof-of-concept application that automatically identifies
semantic correspondences between concepts of two input ontologies. The application supports two
use cases:

1. Semantic interoperability in the development of new ATM information models and services. By

suggesting semantic correspondences between models under development and the AIRM this
encourages re-use of standardised information elements rather than the development of new
ones.

2. Compliance Assessment. Once information models are developed they undergo a process to
assure that they are compliant with the AIRM. The AIRM Compliance Validator supports the
compliance assessment process as it through an automated process suggests semantic
correspondence between elements in the information models under assessment and the AIRM.

The application is developed using principles from ontology matching research, and it includes the
following main components:

• A set of metrics used for profiling ontologies to be matched;
• A set of matching algorithms that produce an alignment as a set of semantic correspondences;
• Strategies that combine the alignments in an optimal manner.

2.3.2 How do I use the tool?
The development re-uses and extends source code from the following java libraries:

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

23

Founding Members

• OWL API. We use the OWL API [8] for parsing the input ontologies and for retrieving statistics
about the ontology constructs used in the ontology profiling.

• Alignment API. The Alignment API [9] provides interfaces and methods for supporting
implementation of matching algorithms and generating alignment files according to the
alignment format.

• OntoSim. OntoSim4 provides a library of various types of similarity algorithms. From this
library we use the ISub string matching algorithm, originally developed by Stoilos [11].

• JWNL. JWNL5 is a java library for interacting with the WordNet [12] database. WordNet is a
synonym lexicon that defines a number of different semantic relations between concepts.

• Apache POI. Apache POI6 is an API that is used for manipulating Office Open XML standards
(OOXML) and Microsoft's OLE 2 Compound Document format (OLE2). More specifically we use
Apache POI for transforming AIRM compliance mapping artefacts in Excel to reference
alignments used to evaluate the quality of alignments produced by the Alignment API.

• Neo4J. Neo4J7 is a graph database that is used by the structural matcher Closest Parent
Matcher, and has to be installed and run in order to execute the Closest Parent Matcher.

Apache Maven8 is used for managing dependencies with required java libraries.

The source code of the AIRM Compliance Validator can be downloaded from GitHub:
https://github.com/sju-best-project/compliancevalidator

For interacting with the AIRM Compliance Validator we have developed a simple command-line user
interface that is described in the following:

The first activity of the matching workflow is to analyse the ontologies to be matched. We have
developed a component called Ontology Profiler that analyses the terminological, structural and
lexical characteristics of the input ontologies. Figure 7 shows the user interface for the Ontology
Profiler. The only input required is the two ontology files to be analysed. We refer to D1.2 AIRM
Compliance Validator [10] report for an explanation of what the different metrics mean and how their
results should be interpreted.

4 http://ontosim.gforge.inria.fr/
5 https://sourceforge.net/projects/jwordnet/
6 https://poi.apache.org/
7 https://neo4j.com/
8 https://maven.apache.org

EDITION 00.01.00

24

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 7. Ontology Profiler

The results from the Ontology Profiler gives an indication of the performance to be expected from
different matching algorithms. Once the set of matchers to be included in the matching process is
determined, the core matching process of the AIRM Compliance Validator can be executed. In the
following we include screenshots and explanations for each step of this process.

2.3.2.1 Import ontologies
The entire process starts by importing the two ontologies from which semantic correspondences will
be identified. The parsers implemented in the AIRM Compliance Validator will only accept OWL
ontologies, and the ontologies have to reside locally on disk, not online. Next, the user is asked to
provide a path to a folder where the alignment holding all semantic correspondences will be stored.

Figure 8. Import of ontologies to be matched

2.3.2.2 Match ontologies
Once the ontologies are imported and parsed, the matching of the two imported ontologies is
performed with some initial configuration from the user. This includes selecting the desired type of

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

25

Founding Members

semantic correspondence (equivalence or other semantic correspondence types), selecting
matcher(s), and configuring the confidence measure.

2.3.2.3 Select matching strategy
Once the ontologies are imported, the user is asked to select whether the AIRM Compliance Validator
should identify equivalence relations or other semantic relations. Afterwards, the user is presented
with a list of available matchers and combination strategies (matcher configuration). The sub-menu
shown presenting the available matchers depends on whether the user has selected equivalence
relations (Figure 9) or other semantic relations Figure 10).

Figure 9. Select Matching Strategy - Equivalence

Figure 10. Select Matching Strategy - Other Semantic Correspondences

Note that in order to run the Closest Parent Matcher an instance of the Neo4J database has to be
installed and running. When Neo4J is running a database to hold the graph representation of the
ontologies to be matched is created automatically.

2.3.2.4 Matcher configuration
If the user has selected a combination strategy from the sub-menus, he/she is asked to provide a path
to the folder holding the alignments to be combined, see Figure 11.

EDITION 00.01.00

26

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 11. Selection of folder holding alignments to be combined

If the user has selected an individual matcher, he/she is asked to configure which confidence threshold
to be applied for the matcher, see Figure 12.

Figure 12. Configuring the selected matcher

Once the configuration of confidence threshold is done, the matching is executed.

2.3.2.5 Report identified semantic correspondences
The identified semantic correspondences are presented in an RDF-XML file according to the Alignment
Format9. Figure 13 shows the output from an equivalence matching operation using the XML editor
OxygenXML10. Each equivalence correspondence is represented in a map element, and each map
element contains one cell element. Within each cell element the two concepts forming the semantic
correspondence is represented as entity1 and entity2. The type of semantic correspondence between
the two concepts is expressed in the relation element. For equivalence correspondences the relation
is ‘=’, while specialisation (restriction) which is shown in Figure 14 is specified as < (less than).
Generalisation would be specified as > (or greater than).

9 http://alignapi.gforge.inria.fr/format.html
10 https://www.oxygenxml.com/

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

27

Founding Members

Figure 13. Semantic Correspondences in Alignment Format - Equivalence

Figure 14. Semantic Correspondences in Alignment Format - Other Correspondences

EDITION 00.01.00

28

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

3 Results Group 2: Concepts and Prototypes
developed in BEST for illustrating the
usefulness and feasibility

3.1 Semantic Container Concept
The semantic container approach is detailed in Deliverable D2.1. We investigate the benefits of using
semantic web technologies for realizing the upcoming System Wide Information Management (SWIM)
concept for Air Traffic Management (ATM). We identify kinds of ATM information and metadata that
existing semantic web technologies can handle effectively, and we propose a semantic container
approach for handling ATM information within SWIM. What is the purpose of the concept?

The semantic container approach, as developed in the course of the BEST project, complements the
European SWIM service (instance) definitions with a means for the description of the information that
a service instance uses and provides. A faceted approach using existing semantic technologies and
ontology modules, developed in the same research project, allows for flexible information description.
The packaging of information into semantic containers allows for the caching of information and its
subsequent discovery for later re-use.
ATM information packaged into semantic containers can be stored redundantly on different server
nodes for increased availability. The metadata expressed using semantic technologies allows for the
replication of information and the subsequent discovery and re-use in a distributed environment. A
semantic container may also derive from other containers, combining the information contained in
these containers. The semantic description of information allows for the updating of such
combinations of containers in a distributed environment where different services produce and update
the source information. The semantic description may also be beneficial for deciding where to allocate
information in a distributed SWIM environment.
The concept of semantic containers focuses on enriching data by collecting individual data items into
sets of data items labeled with semantic metadata about, for example, freshness, quality, localization,
and time. SWIM applications may use this information to be more efficient. Generic filtering and
clustering of SWIM data will help SWIM developers to reduce redundancies. Collections of messages
based on the established standards AIXM, IWXXM and FIXM, such as DNOTAMs, TAFs, METARs,
SIGMETs and flight plans, are prepared as BEST semantic containers with semantic labels, which can
be further processed by applications. Future SWIM applications will only need to focus on the
necessary operation-specific filtering and prioritizing of the data, based on operational rules. The
concept enables a generic way of filtering according to temporal, spatial, and other semantic aspects
such as the quality of data and freshness.

Figure 15 illustrates possible derivation chains of semantic containers. Filtering, enrichment,
combination, and composition of information leads to the computation of several derivation states. In
order to keep the figure as readable as possible, it does not show component containers, physical
containers, i.e., allocations of logical containers, versions and administrative metadata. The figure
provides a high-level overview of how semantic containers can be generated from other containers.

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

29

Founding Members

Figure 15. Possible semantic container derivation operations along with concrete examples

Possible container derivations are “combine”, “compose”, “filter”, “derive” and “enrich”. The combine
operation produces a homogeneous composite container from a set of input containers with the same
entity/annotation type. For example, sets of METAR containers from different countries as input yield
a single composite container as output. The compose operation produces a heterogeneous composite
container from a set of input containers with different entity/annotation types. For example, a METAR
container, a NOTAM container, and a container with NOTAM importance as input yield a
heterogeneous composite container as output. The filter operation takes a container as input and
produces a container with a reduced set of data items. For example, a NOTAM container with NOTAMs
for a specific route as input is filtered with respect to a specific flight on a specific date. The derive
operation takes a container as input and produces a container with some annotation type as output.
For example, a NOTAM container as input yields a container with a set of NOTAM importance
annotations for a specific flight as output. The enrich operation is a combination of derive and
compose. For example, from a container of NOTAMs relevant for a specific flight route, first all the
NOTAM importance annotations relevant for a specific flight are derived, which then constitute

combine

E1<f1>

E1<f2>

E1<f3>

E1<f1 U f2 U f3>

Activity

Input
(Primary, Dynamic)

Output

Container

Combine

Filter

Derive

filter <f2>E1<f1> E1<f2>

derive A1 <f2>E1<f1> A1<f2>

compose

E1<f1>

E2<f2>

A1<f3>

E1<f1> U E2<f2> U
A1<f3> Compose

combine

METARs<aut>

METARs<de>

METARs<ch>

METARs<aut U de U ch>

compose

METARs
<ZRH-FRA, 05/04/2017>

NOTAMs
<LX1068, 05/04/2017>

NOTAM-IMPORTANCE
<LX1068, 05/04/2017>

METARs<ZRH-FRA, 05/04/2017> U
NOTAMs<LX1068, 05/04/2017> U

NOTAM-IMPORTANCE <LX1068, 05/04/2017>

filter
<ZRH-FRA, 05/04/

2017>
NOTAMs<ZRH-FRA> NOTAMs< ZRH-FRA, 05/04/2017 >

derive NOTAM-
IMPORTANCE

<LX1068, 05/04/
2017>

NOTAMs<ZRH-FRA> NOTAM-IMPORTANCE
<LX1068, 05/04/2017>

Constraint: f2 subsumed by f1

Container E1 : an Entity Type, e.g., METARs, NOTAMs

A1 : an Annotation Type, e.g. NOTAM-IMPORTANCE

<f1> : a faceted concept (semantic label, semantic context description), e.g., <ZRH-FRA, 05/04/2017, A320>

U : Union

Constraint: f2 subsumed by f1

Input (Secondary, Static)

enrich with:
A1 <f2>E1<f1> E1<f1> U

A1<f2>Enrich

enrich with
NOTAM-

IMPORTANCE
<LX1068,05/04/

2017

NOTAMs<ZRH-FRA> NOTAMs<ZRH-FRA> U
NOTAM-IMPORTANCE <LX1068, 05/04/2017>

derive A1 <f2>E1<f1> A1<f2>

compose E1<f1> U
A1<f2>

as shortcut for

derive NOTAM-
IMPORTANCE
<LX1068,05/04/

2017
NOTAMs<ZRH-FRA> NOTAM-IMPORTANCE

<LX1068, 05/04/2017>

as shortcut for

compose NOTAMs<ZRH-FRA> U
NOTAM-IMPORTANCE <LX1068, 05/04/2017>

Compose + Filter compose
 & filter <f4>

E1<f1>

E2<f2>

A1<f3>

E1<f4> U E2 <f4> U
A1<f4>

compose
 & filter

<LX1068,
05/04/2017>

METARs
<ZRH-FRA, 05/04/2017>

NOTAMs
<ZRH-FRA, 05/04/2017>

NOTAM-IMPORTANCE
<LX1068, 05/04/2017>

METARs<LX1068, 05/04/2017> U
NOTAMs<LX1068, 05/04/2017> U

NOTAM-IMPORTANCE<LX1068, 05/04/2017>

EDITION 00.01.00

30

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

together with the original container the components of a heterogeneous composite container. In the
following, we provide examples of derivation chains

3.2 Semantic Container Management System (Prototype)
The Semantic Container Management System (SMCS) is detailed in D3.2 Prototype SWIM-enabled
applications [12] chapter 3. In this section, we describe the management of Semantic Containers in a
distributed SWIM environment. We discuss the metamodel for Semantic Container Management
System in UML that considers both logical and physical aspects of semantic containers which was the
baseline for the prototype development. We follow different views on semantic containers, namely
distribution and replication, lineage and provenance, as well as versioning and consistency
management.

3.2.1 How does the Distribution and Replication Work?
A semantic container is primarily a logical unit of data items with a semantic label that states a
membership condition for data items, which represents a commitment by the creator of the container:
The semantic container comprises all data items that satisfy the membership condition. The
metamodel of the faceted membership condition is part of the semantic label. Facets are dimensions
of semantic description, and can be classified into spatial, temporal, and other semantic facets.

For example, a spatial facet may describe the geographic focus of the DNOTAMs in a semantic
container; a temporal facet the time of validity of the DNOTAMs, another semantic facet may refer to
the type of aircraft for which the contained DNOTAMs are relevant. The facet values that a semantic
label assigns for each facet come from an ontology. For example, a DNOTAM container may contain
DNOTAMs relevant for fixed-wing aircraft, with fixed-wing aircraft being represented by a concept in
an ontology derived from the ATM Information Reference Model (AIRM). A single facet may be defined
by multiple ontologies, and the same ontology may serve to define the same facet.

Now a semantic container is also a physical package (see Figure 16) of data items, meaning that each
logical semantic container also has an allocation at a specific physical server location as well as copies
at multiple other locations. For example, a semantic container with all DNOTAMs for a flight from
Munich to Frankfurt may be allocated on servers at Munich airport and Frankfurt airport, or on an
aircraft that conducts a flight from Munich to Frankfurt. For the proof-of-concept of the distributed
architecture we implemented two different locations during the prototyping (see Figure 17).

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

31

Founding Members

Figure 16. Allocation of physical semantic containers

We opt for a distribution and replication concept where each logical semantic container has one
primary copy stored at some location, and potentially multiple replicas stored at other locations. We
note, however, that also other distribution and replication concepts may be considered, including
decentralized solutions and reference-only containers. The former refers to a solution where no copy
of a logical container is a designated primary. The latter refers to containers that have no physical
materialization but are only logical concepts materialized upon request.

Figure 17: Semantic Container Management Platform Prototype showing two different locations.

class Allocation

PhysicalContainer

+ lastSyncWithPrimaryCopy: datetime

Logical::LogicalContainer

Location

*
pushUpdatesTo

+subscriber*

*

+/primaryAllocation 1

0..1

+secondaryCopy *

*

+/secondaryAllocation *

*

+allocation

1

0..1

+primaryCopy 1

EDITION 00.01.00

32

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

A physical container represents one copy of a logical container stored at a location. The logical
container’s primary allocation is the location of the physical container that is the logical container’s
primary copy. The secondary copies must be kept in sync with the primary copy. The local container
management systems on each location may subscribe to receive updates for the secondary copies of
a specific logical container that these locations hold. Alternatively, pull-based approach may be
followed. In that case, a physical container must store the date when the last sync with its primary
copy has occurred, in order to be able to judge whether synchronization should be attempted or not.

3.2.2 How does Versioning and Consistency Management work?
Concerning updates to semantic containers, we distinguish containers that keep versions from
containers that do not. Unversioned containers consist of contents and when that content changes,
the previous content is forgotten. For auditability’s sake, however, versioned containers are preferred
since they allow rebuilding past states of information that led to certain decisions, which is important
in the case of accidents and failures. A versioned logical container has multiple versions of its contents
as well as one current version. Physically, only the versioned elementary containers have actual
datasets (see Error! Reference source not found.).

Figure 18. Physical storage of container versions

A composite container’s datasets are its component containers. Now an elementary physical container
has an initial dataset, and each update adds a delta set to the physical container. Concerning the
composition of the physical container’s current version, we consider two possibilities: Either the delta
set adds to the set of valid data items – meaning that after the first update, the initial set plus the delta
set constitute the container’s current version – or the delta set replaces the previous sets and becomes
the sole constituent of the current version. Either way, all delta sets are preserved for future
auditability. Each data set also stores its creation time for audit purposes. In case the primary copy is
not reachable for synchronization, the secondary copies may be updated through alternative sources.
In that case, however, should the alternative source be a non-primary source of information (see next
section), the added dataset is a degenerated dataset. A version that consists of at least one
degenerated dataset is a degenerated version (see Figure 19). In that case, the contents of the physical
version are likely not as trustworthy as those of a regular physical version. Once the primary copy

class Versioning

Logical::LogicalContainerPhysicalContainer

VersionedPhysicalContainer Logical::VersionedLogicalContainer

Location

Logical::LogicalVersionPhysicalVersion

RegularPhysicalVersion DegeneratedPhysicalVersion

PhysicalDataset

+ creationTime: datetime

RegularPhysicalDataset DegeneratedPhysicalDataset

VersionedElementaryPhysicalContainer

ElementaryPhysicalContainer

VersionedCompositePhysicalContainer

CompositePhysicalContainer

UnversionedPhysicalContainer

*

+/allocation

1..*

+version 1..*

1

+component

1..*
{redefines component}

0..10..1

+deltaSet *
+/version 1..*

1
0..1

+initialSet 1
+/currentVersion 1

1

1

+/allocation

1..*

+currentVersion 1

0..1

+/allocatedPhysicalVersion

*

+/allocation 1

1..*

+dataset

1..*

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

33

Founding Members

becomes available again, the degenerated datasets can be replaced by the regular sets in the current
version, but are kept for audit purposes.

Figure 19: Versioning in the Semantic Container Management System

A versioned composite physical container consists of multiple component physical containers. The
datasets of a composite container derive from the datasets of its components. Note that all
components of a composite container are allocated on the same location together. In the following,
we define how logical and physical containers are derived by services from other containers,
formalizing the principles of derivation chains from the previous sections.

3.2.3 How is Lineage and Provenance represented?
The provenance of a semantic container in a derivation chain is represented in the container
management system. A logical container may have multiple primary sources as well as alternative
secondary sources. The primary sources are the sources of prime quality. Secondary sources usually
offer degraded quality.
A container derives from a primary or secondary source through a service call. A service call has a
semantic label as arguments and possibly many static containers as additional input, corresponding
the concepts and static containers in the examples from the previous sections. A service call can have
multiple occurrences. The call occurrences are what actually produce a dataset (see Figure 20).
Services, just like containers, have logical and physical aspects that must be considered. Each logical
service has a provider and may be realized as multiple physical services running at different locations.
The location that produces a dataset may be different from the location where the source or result
dataset resides.

EDITION 00.01.00

34

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

Figure 20. Class diagram “Service” in the physical view: Physical realization of container provenance

The references to physical service calls and call occurrences allows to trace the production back to a
specific service provider. Besides tracking provenance, the linking back to the creating service also
allows assumptions about the data quality, since potential data quality attributes of the information
service from the SWIM registry (when in place) can be used also to describe the quality of the semantic
containers produced by the services.

Figure 21: Creation of a Homogenous Composite Container in the SCMS

class Service

Logical::LogicalServiceLogical::LogicalServiceCall

Location

PhysicalService

Logical::LogicalServiceCallOccurrence

PhysicalServiceCallPhysicalServiceCallOccurrence

+ occurrenceTime: datetime

PhysicalDataset

+ creationTime: datetime

PhysicalContainer

1

+call

*

+occurrence

* 1

1

+realization 1..*

*

+allocation 1

1

+occurrence

*

1

+/logicalCallOccurrence
1 1

+realization *

*

+/allocation 1..*

*

+secondaryInput *

+creatingCallOccurrence1

1

1

+call

*

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

35

Founding Members

3.2.4 How does the System Architecture look like?
The system architecture consists of a central logical container repository and a number of
decentralized physical repositories that manage the actually allocated data. Figure 22 illustrates the
architecture of the container registry, with example locations. Note that each geographic location
could have multiple server locations. An aircraft could also be equipped with a local container
management system in order to physically allocate relevant data on the aircraft directly. During the
prototype development we implemented two locations (Linz and Vienna) to proof the concept (see
Figure 24).

Figure 22. Central logical container registry and multiple physical container registries at different server locations

Figure 23: Multiple locations for container storage

Logical Container
Registry

Physical Container
Registry

Physical Container
Registry

Physical Container
Registry

SWIM registry

Linz Vienna *

EDITION 00.01.00

36

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

3.3 Integration of Semantic Containers in a SWIM Environment
A detailed view of the scenario used to illustrate the integration of semantic containers in the SWIM
Environment can be found in D3.2 Prototype SWIM-enabled Applications [12] chapter 5. Figure 24
gives an overview about how semantic containers can be integrated into SWIM. The SWIM Registry
(see 1) was used to provide not only information about SWIM services but also about Semantic
Containers via SWIM. The BEST Experimental Prototype Evolution 2: Semantic Container Management
System (see 2) is used to define and create containers that are than visible through the SWIM registry.
On organizational level the SWIM Integration platform (Frequentis’ MosaiX) is used (see 3) to configure
organization internal the SWIM information for the specific SWIM applications. And finally, the
information is than accessed by a SWIM application. For the BEST integration we used an existing
SESAR 1 prototype, namely the Integrated Digital Briefing used (see 4) from SESAR WP13.2.2.

Figure 24: Integration of Semantic Containers into SWIM [12]

BEST
Services

SWIM Enabled Application

+BEST

SWIM Integration Platform

Database

SWIM
Registry

Knowledge
base

Semantic
Container

Semantic
Container

+BEST Services

Semantic Container
Management System

SWIM Enabled Application

+BEST

SWIM Enabled Application

+BEST

SWIM Network

Organization

1

2

3

4

D4.4 TUTORIAL FOR SOFTWARE DEVELOPER 	

	

		

	

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

37

Founding Members

References
[1] A. Vennesland, B. Neumayr, C. Schuetz, and A. Savulov, “D1.1 Experimental ontology modules

formalising concept definition of ATM data,” 2017.
[2] S. Wilson, “EUROCONTROL Specification for SWIM Information Definition version 1.0,”

Brussels, Belgium, 2017.
[3] S. Wilson, S. Keller, G. Marrazzo, and R. Suzic, “AIRM Compliance Framework,” 2015.
[4] Object Management Group, “Ontology Definition Metamodel (ODM) v1.1,” Needham, OSA,

2014.
[5] A. Vennesland, E. Gringinger, and A. Kocsis, “D5.2 Ontology Modularisation Guidelines,” 2018.
[6] M. D’Aquin, “Modularizing Ontologies,” in Ontology Engineering in a Networked World, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 213–233.
[7] C. Del Vescovo, R. Gonçalves, B. Parsia, and U. Sattler, “OWL @ Manchester: Modularity,” 2018.

[Online]. Available: http://owl.cs.manchester.ac.uk/research/modularity/. [Accessed: 19-Apr-
2018].

[8] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL Ontologies,” Semant. Web J.,
vol. 2, no. 1, pp. 11–21, 2011.

[9] J. David, J. Euzenat, F. Scharffe, and C. T. Dos Santos, “The Alignment API 4.0,” Semant. Web,
vol. 2, no. 1, pp. 3–10, 2010.

[10] A. Vennesland, B. Neumayr, C. Schuetz, and E. Gringinger, “D1.2 AIRM Compliance Validator,”
2018.

[11] S. Stoilos, Giorgos and Stamou, Giorgos and Kollias, “A string metric for ontology alignment,” in
Proceeding of the International Semantic Web Conference 2005, 2005, pp. 624–637.

[12] C. Fellbaum, WordNet: An Electronical Lexical Database. Cambridge: MIT Press, 1998.

EDITION 00.01.00

38

© 2018– BEST Consortium
All rights reserved. Licensed to the SESAR Joint Undertaking under conditions

Founding Members

The BEST consortium:
SINTEF

Frequentis AG

Johannes
Kepler
Universität
(JKU)

Linz

SLOT
Consulting

EUROCONTROL

